5章 形態学的観察 5.1 形態学的観察の概要

顕微鏡の歴史

1683年 A. レーウェンフック 単式顕微鏡
R. フック 複式顕微鏡
1837年 イギリス ワトソン光学会社 顕微鏡の製造
1866年~ カールツアイス アッベ 油浸レンズ
1876年 アッベ 開口数の概念
1903年 シグモイド 暗視野顕微鏡
1925年 山本忠昭 干渉顕微鏡
1935年 F.ゼルニケ 位相差顕微鏡

1938年 E. ルスカ 電子顕微鏡

1969年 ダビドビッツ 共焦点レーザー走査顕微鏡の原理

- 1981年 Binnig, Roher走査トンネル顕微鏡
- 1986年 Binnig, Quate, Gerber原子間力顕微鏡

有機・高分子固体の大部分は軽元素のみからなる 軽元素のイメージング

・走査プローブ顕微鏡
・化学間力顕微鏡(CFM)
・摩擦力顕微鏡(LFM,FFM)
・電子顕微鏡
・エネルギー分散型X線スペクトル(EDX)
・電子線分光型透過電子顕微鏡(EFTEM)
・二次イオン質量分析法(SIMS)
・イメージングSIMS

•X線顕微鏡

有機・高分子材料のナノテクノロジー

基礎技術

				新しい概念に基つく
~	半導体	生体	有機·高分子材料	顕微鏡 走香プローブ顕微鏡
[]		器官		レビッロ ジェ M See 1981 走査トンネル
	シリコン単結晶	組織	繊維・フィルム	顕微鏡 1986 原子間力顕
nm		細胞	低分子の単結晶	微鏡
	集積回路	染色体	球晶	観るだけではなく
ım	I SI	パクテリア 生体膜		測る、加工する
		ねヽノ」ぴク毎	多層膜・LB膜 二分子膜・ミセル	And a start of the
nm	単一分子デバイス	核酸		<u></u>
-	原子		カーホンティテューノ フラーレン	

ナノテクノロジー ナノメートル・スケールで加工する

分子を組み立てて新しい材料を作る

5.2 透過電子顕微鏡

http://www.jeol.co.jp/

TEMを用いた結晶性高分子の表面構造解析

ポリエチレンの0.01%キシレン溶液を373Kで調製し、348Kに放置すると液が 濁ってくる。その液の中には単結晶が生成している。電子顕微鏡で見ると

このようにして分子は厚さ10万分の1mmの薄い板状の結晶に入っているのか? 「個の分子が1つの単結晶に入っているのだろうか?

ナイロンークレイハイブリッドの構造解析

Composite Interfaces, 6,247(1999).

LB-OTS単分子膜の電子線回折像の温度依存性

エベルキーフィルターTEM: 電子エネルギー損失分光と電子分光結像法 EFTEM performs EELS and ESI EELS: Electron Energy Loss Spectroscopy ESI: Electron Spectroscopic Imaging

エネルギーフィルター像の形成 インカラム型とポストカラム型エネルギーフィルタ

EFTEM:試料を透過した非弾性散乱電 子を分光する電子線プリズムを搭載し たTEMであり、ナノレベルでの局所領域 における元素組成,結合状態を解析す ることが可能となる非弾性散乱電子は、 入射電子線が試料の電子を励起した 結果、エネルギーを損失した電子であ り、電子エネルギー損失分光(EELS)と して、試料に含まれる元素種や結合状 態に関する情報を与え、さらに分光した 非弾性散乱電子により、元素マッピン グ像を得ることができる.

• LEO922

http://www.i-eng.hitachi.co.jp/intro/member/20hl0009/

ナノレベルの局所化学分析を可能にするEFTEMにおける3つの機能 Functions of EFTEM: Nanoscale chemical analysis by ESI and EELS

Contraction of the second sec

Image EELS

コアロス像からBG の影響を取り除き、 元素マッピング像 を得る

損失エネルギーを 変化させながら連 続的に電子分光像 を取り込む

Parallel EELS

フィルターにより分散された非弾性 散乱電子をそのままカメラで撮影 し、シグナル強度を損失エネル ギーに対してプロットする

弾性散乱像

酸素の K - edge (PMA成分)

ポリスチレン(PS) / ポリブタジエン (PBD) / ポリメチル アクリレート(PMA) 3成分系ブレンド

K. Varlota, J.M. Martina, C. Quetb, Polymer 41,4599 (2000).

6.9eVの芳香環 (PS成分)

耐衝撃ポリスチレン (HIPS) 非弾性散乱をブロック することにより未染色 でも観察できる。 C. A. Correa, E. Hage, Jr. Polymer, 40,2171(1999).

マイクロポーラス構造(A)部分の断面の研 黄原子のEFTEM写真であり、マイクロ ポーラス構造中にブロック共重合体の相 分離によるナノ構造が基板に対し垂直方 向に配列している

T. Hayakawa, S. Horiuchi, Angew. Chem. Int. Ed., 42, 2285(2003).

接着界面の解析(AIST、堀内ら)

ポリブチレンテレフタレート(PBT)/エポキシ系接着剤の界面の観察例 接着界面付近のTEM像,及びSi,O,C元素マッピング像 界面において,厚さ約50nmの接着阻害層と考えられる領域が存在 界面層からのEELSスペクトルを解析することにより、元素組成が明らかになり、 化合物の構造を推定することが可能

ブロック共重合体の3次元トモグラフィー像(京工繊大、陣内ら)

SISの三次元電子顕微鏡像(スケールバーに 格子長(74nm)に相当) ネットワーク状のドメインはポリスチレン

ネットワーク状ポリスチレン相の色の違いは、 互いに交差しないネットワークが2本存在していることを示している。一方、PI相は透明部分に相当。この構造は、結晶構造学的にはIa3eという空間群に属し、高度の規則性を持つ結晶様構造

H. Jinnai Y. Nishikawa, R. J. Spontak, S. D. Smith, D. A. Agard, T. Hashimoto, Phys. Rev. Lett., 84, 518 (2000).

5.3 走查電子顕微鏡

量子発生の深さと空間分解能(Goldsteinによる)

原理

電子光学的に収束された電子ビーム で、試料表面を二次元的に走査する。 電子ビームは試料表面から二次電子 をたたき出し、二次電子を集めて、ブ ラウン管を輝度変調する。CRTのラス ターが走査と同期しているので、試料 表面の拡大像が得られる。

液晶高分子の反転壁の高分解能SEM(1kV)とAFM像(D.Vezie)

FE-SEMによるパターン化単分子膜の観察

走査フォース顕微鏡 (Scanning Force Microscope) ー表面の形態のみではなく表面の性 質あるいは相互作用力が評価可能

原子間力顕微鏡(Atomic Force Microscope) 形態
水平力(摩擦力)顕微鏡(Lateral Force Microscope) 水平力・摩擦力
走査粘弾性顕微鏡(Scanning Viscoelasticity Microscope) 粘弾性
化学間力顕微鏡(Chemical Force Microscope) 官能基間の相互作用力
分子間力顕微鏡(Molecular Force Probe) 分子鎖一本の力一変位曲線

AFMの3つのモード

モード	C-AFM	IC-AFM	NC-AFM
		振幅:20~100 nm	振幅:1~3 nm
力検出モード			‡
	スタティック	ダイナミック	ダイナミック
水平分解能	0.2~1 nm	1 nm	5~10 nm
サンプルに かかる力	大 (大気中~10 nN (液 中~1 nN)	小 (大気中 <i></i> (0.1~1 nN)	小 (大気中 <i>~</i> (0.01~0.1 nN)
摩擦力	大	無	無
軟サンプル観察			
観察の安定性			
備考	摩擦力顕微鏡に 応用	軟らかいサンプ ルの高分解能観 察	磁気力顕微鏡、 表面電位顕微鏡 に応用

ノンコンタクトモードの原理

http://www.ieol.co.in/

走査フォース顕微鏡による物性測定

原子間力顕微鏡:AFM

ピエゾ素子

ポリスチレンーblock ポリメチルメタクリレート ブロック共重合体(PS-b-PMMA, Mn(PS):15万、Mn(PMMA):39万)の原子間力顕微鏡像 ポリマーの希薄溶液を水面上に展開し、Langmuir-Blodgett法によりマ イカ基板に移し取って観察している。PSは親水基を持たないため水面 上で凝集し、PSの一本のブロック鎖からなる粒子、単ブロック鎖粒子を 形成し、その周りに、PMMAの分子鎖が観察されている。 J. Kumaki, Y. Nishikawa, T. Hashimoto, J. Am. Chem. Soc., 118, 3321 (1996)

ポリエチレン単結晶(HDPE Mw=520k)の表面構造 343Kで48時間結晶化(セルフシーディング法)

原子間力顕微鏡像

水平力顕微鏡像

カンチレバーの走査 方向と折りたたみ構 造の関係

水平力でのコントラスト 規則正しい分子鎖折りたたみ構造(2nm程度)の存在

Kajiyama, Takahara, 1999

SiOX基板上にトルエン溶液よりスピンキャストで製膜した対称P(重水素化St-b-MMA)ジブロック共重合体膜の熱処理後のAFM像と断面のプロファイル

暗い部分は高さの低い部分で、表面からの深さは約25nmで長周期Lに対応している。系 全体の界面自由エネルギーは、空気界面にdPS層が、SiOX基板界面にPMMA層が形成 されるときに最小値をとる。熱処理前は膜表面は平滑であったが、熱処理前の膜厚が (n+1/2)L(ここでnは整数)ではないために、局所的に厚みを(n+1/2)Lにして系全体の自由 エネルギーを極小にし、長周期に対応した深さのホールが形成される。

アルキルシラン単分子膜の高分解能AFM観察

K平力のアルキル鎖長依存性(LFM)

結晶性成分がドメイン を形成

> 水平力 結晶相 > 非晶相

(OTS-C18/FOETS)(50/50)

(DOTS-C22/FOETS)(50/50)

(TATS C-30/FOETS)(50/50)

フルオロアルキル鎖

水平力大

高い剛直性

有機シラン化合物の水平力の鎖長依存性

OTS($C_{18}H_{37}SiCl_{3}$)およびFOETS($C_{8}F_{17}C_{2}H_{4}SiCl_{3}$)単分子膜 表面への牛血清アルブミン(BSA)の吸着形態のAFM像(乾燥 後) 10分後 [BSA] = 0.1 mg ml⁻¹

(OTS/FOETS)(50/50)単分子膜表面への牛血清アルブミン(BSA) の吸着形態のAFM像(乾燥後)ー10分後 [BSA] = 0.1 mg ml⁻¹

(a) pH=7.5

adsorbed BSA FOETS (b) pH=4.7

(OTS/FOETS)(50/50)単分子膜表面への牛血清アルブミン(BSA)の吸着挙動の液中AFMによるその場観察 [BSA] = 20 μg ml⁻¹, pH > pl of BSA

(OTS/FOETS)(50/50)単分子膜表面への牛血清アルブミ ン(BSA)の吸着挙動の液中AFMによるその場観察 $[BSA] = 20 \ \mu g \ ml^{-1}, \ pH = pl \ of BSA$

Distance/µm

Distance/µm

3

4

2

1

pH7.5におけるBSAの選択吸着の機構

・疎水性の高いFOETS相へのBSAの吸着 界面エネルギーの極小化 ・負に帯電したBSAの静電反発

AFMの力測定能の利用

チップにBSAを固 定し、フォースを測 定すればBSAと表 面に働く力を測定 できる。

問題点

長距離の相互作 用ーBSAの unfolding (アプローチ時の BSAの変性)

タンパク質のモデ ルとなる官能基の 利用

pKa=約5.5のCOOHを固定化 したチップとBSA吸着前後の 相分離単分子膜の相互作用 の評価

VM、LFMによる局分子固体表面の分子連動特性評価 長面力学物性のイメージング

Polystyrene(PS) /Poly(vinyl methyl ether) (PVME) (63/38w/w) ブレンド超薄膜

ガラス状高分子の表面はガラス状態か?

単分散 PSの表面位相差 δs とバルク tan δ の温度依存性

N. Satomi, A. Takahara, T. Kajiyama: *Macromolecules,* 32, 4474(1999).

単分散 PS-H のT_g^s と T_g^b の分子量依存性

Scaling analysis

(低分子量PS/高分子量dPS) ブレンド膜

sec $-C_4H_9 \leftarrow CH_2 - CH \rightarrow H_n$

LMW-hPS

dPS-847k

低分子量成分が表面に濃縮されるか -多分散系のモデル

リビングアニオン重合 単分散性

200nm 膜厚のPS膜をSiウエハー基板上にスピンコート 423Kで48時間

(低分子量hPS/高分子量dPS) ブレンドの表面分子運動特性

Temperature / K

LFMより評価した(hPS19.7k/dPS847k) ブレンド膜のTgの組成依 存性

(LMW-hPS/HMW-dPS)の表面組成

LFM,NR,SIMSより評価し た表面組成は一致 LFMによる表面Tg評価に 基づき表面組成が評価で きる

≻一般の多分散系の表面 Tg、添加物の効果などの 解明

ナノ光源を用いた顕微鏡(近接場光学顕微鏡)

(リエチレンのフィルムを観察する 球晶構造

ポリ(ヒドロキシブチレート)(PHB)薄膜の偏光NSOM像

R. L. Williamson, M. J. Miles, J. Vac. Sci. Tech., B14, 809(1996).

液晶溶液より紡糸されたポリ(p - フェニレンテレフタルアミド) (PPTA Kevlar29繊維)のNSOM像

A)基本波、(B)二倍波信号NSOM像、 C)Topograph像、(D)基本波/二倍波の信号の比

H. Ade, R. Toledo-Crow, M. Vaez-Irvani, R. J. Spontak,

走査サーマル顕微鏡 (Sccanning Thermal Microscopy: SThM)

Wollaston probe Pt/Rh(9/1) wire

(PVC/PBD) blend

Photoresit

Patterned PMMA on Silica Substrate

レポート課題 締め切り7月30日午後5時

- Si基板上に製膜した厚さ10nmと50nmのPS薄膜からのX線 反射率の散乱ベクトル、q依存性を計算しプロットせよ。(計 算過程とグラフ、A4、1ページ)
- 2. 光学顕微鏡、走査電子顕微鏡、透過電子顕微鏡、原子間力 顕微鏡の特徴を超分子に適用する際の問題点を含めて比 較する表を作成せよ。(A4、1ページ)
- 3.7/9の原氏の講演についての感想をレポート用紙1枚にま とめよ。(原先生からの依頼がありましたので)